TESLA GPU Computing

Accelerating High Performance Computing

http://www.nvidia.com/tesla

Computing – The 3rd Pillar of Science

Drug DesignMolecular Dynamics

Seismic Imaging
Reverse Time Migration

Automotive Design
Computational Fluid Dynamics

Medical Imaging Computed Tomography

Astrophysics n-body

Options Pricing

Monte Carlo

Product DevelopmentFinite Difference Time Domain

Weather Forecasting Atmospheric Physics

GPU Computing Bridging the CPU Wall

GPUs = Higher Flops and Memory Bandwidth

Tesla: 2-3x Faster GPU Every 2 Years

DP GFLOPS per Watt

Add GPUs: Accelerate x86 Applications

Medical Imaging
U of Utah

Molecular Dynamics U of Illinois, Urbana

Video Transcoding Elemental Tech

18X

Matlab Computing AccelerEyes

Astrophysics RIKEN

GPUs Accelerate Science

Financial Simulation

Oxford

Linear Algebra Universidad Jaime

3D Ultrasound Techniscan

Quantum Chemistry U of Illinois, Urbana

Gene Sequencing
U of Maryland

CPU Pizza Delivery

Process: Delivery truck delivers one pizza and then moves to next house

NVIDIA GPU Pizza Delivery

The Era of Accelerated Computing is Here

Titan: World's Fastest Supercomputer 2012

18,688 Tesla K20X GPUs

27 Petaflops Peak: 90% of Performance from GPUs

17.59 Petaflops Sustained Performance on Linpack

Two Supercomputers Built at the Same Time

Tsubame 2.0

Hopper- NERSC

4,224 Tesla GPUs + 2,816 x86 CPUs

1.4 Megawatts2060 Homes in Japan

12,784 x86 CPUs

4.0 MegaWatts 5860 Homes in Japan

World's Greenest Petaflop Supercomputer (2011)

GPU Supercomputers: More Power Efficient

GPUs are Mainstream

Oil & Gas

Edu/Research

Government

Life Sciences

Finance

Manufacturing

PETROBRAS

Bloomberg

Agilent

Explosive Growth of GPU Computing

2008 2012

CUDA Apps Grows 60%, Accelerating Key Apps

Top Supercomputing Apps AMBER LAMMPS Computational NAMD **CHARMM** Chemistry **GROMACS** DL POLY **QMCPACK** Gaussian Material **NWChem** Quantum Espresso Science **GAMESS VASP** CAM-SE Climate & **COSMO** NIM Weather **GEOS-5 WRF** Chroma GTS **Physics** Denovo **ENZO GTC** MILC **ANSYS Mechanical ANSYS Fluent** CAE **MSC** Nastran **OpenFOAM** LS-DYNA **SIMULIA Abaqus**

Accelerated computing

NVIDIA GPU Accelerates Computing

Choose the Right Processor for the Right Task

Low Latency or High Throughput?

CPU

- Optimized for low-latency access to cached data sets
- Control logic for out-of-order and speculative execution

GPU

- Optimized for data-parallel, throughput computation
- Architecture tolerant of memory latency
- More transistors dedicated to computation

Low Latency or High Throughput?

- CPU architecture must minimize latency within each thread
- GPU architecture hides latency with computation from other thread warps

Processing Flow

Processing Flow

Processing Flow

GPU Architecture

GPU Architecture: Two Main Components

- Global memory
 - Analogous to RAM in a CPU server
 - Accessible by both GPU and CPU
 - Currently up to 6 GB
 - Bandwidth currently up to 150 GB/s for Quadro and Tesla products
 - ECC on/off option for Quadro and Tesla products
- Streaming Multiprocessors (SMs)
 - Perform the actual computations
 - Each SM has its own:
 - Control units, registers, execution pipelines, caches

GPU Architecture – Fermi: Streaming Multiprocessor (SM)

- 32 CUDA Cores per SM
 - 32 fp32 ops/clock
 - 16 fp64 ops/clock
 - 32 int32 ops/clock
- 2 warp schedulers
 - Up to 1536 threads concurrently
- 4 special-function units
- 64KB shared mem + L1 cache
- 32K 32-bit registers

GPU Architecture – Fermi: CUDA Core

- Floating point & Integer unit
 - IEEE 754-2008 floating-point standard
 - Fused multiply-add (FMA)
 instruction for both single and
 double precision
- Logic unit
- Move, compare unit
- Branch unit

GPU Architecture – Fermi: Memory System

- L1
 - 16 or 48KB / SM, can be chosen by the program
 - Hardware-managed
 - Aggregate bandwidth per GPU: 1.03 TB/s
- Shared memory
 - User-managed scratch-pad
 - Hardware will not evict until threads overwrite
 - 16 or 48KB / SM (64KB total is split between Shared and L1)
 - Aggregate bandwidth per GPU: 1.03 TB/s

GPU Architecture – Fermi: Memory System

- Unified L2 cache (768k)
 - Fast, coherent data sharing across all cores in the GPU
- ECC protection
 - DRAM
 - ECC supported for GDDR5 memory
 - All major internal memories are ECC protected
 - Register file, L1 cache, L2 cache

Kepler

Kepler

Fastest, Most Efficient HPC Architecture Ever

SMX

Hyper-Q

Dynamic Parallelism

Kepler: Fast & Efficient

3_X

Perf / Watt

32 cores

192 cores

Kepler GK110 Block Diagram

Architecture

- 7.1B Transistors
- 15 SMX units
- > 1 TFLOP FP64
- 1.5 MB L2 Cache
- 384-bit GDDR5

Hyper-Q

CPU Cores Simultaneously Run Tasks on Kepler

FERMI

1 MPI Task at a Time

KEPLER

32 Simultaneous MPI Tasks

Hyper-Q
Max GPU Utilization, Slashes CPU Idle Time

Dynamic Parallelism

GPU Adapts to Data, Dynamically Launches New Threads

Dynamic Parallelism

Makes GPU Computing Easier & Broadens Reach

Supercomputing

Weather / Climate Modeling Molecular Dynamics Computational Physics

Life Sciences

Biochemistry Bioinformatics Material Science

Manufacturing

Structural Mechanics Comp Fluid Dynamics (CFD) Electromagnetics

Defense / Govt

Signal Processing Image Processing Video Analytics

Oil and Gas

Reverse Time Migration Kirchoff Time Migration

Q2 Q3 Q4

Tesla M2090

Tesla

M2075

Fermi

Tesla **K20**

Kepler **GK110**

Tesla K10

Kepler GK104

Tesla K20 Family: 3x Faster Than Fermi

	Tesla K20X	Tesla K20
# CUDA Cores	2688	2496
Peak Double Precision Peak DGEMM	1.32 TF 1.22 TF	1.17 TF 1.10 TF
Peak Single Precision Peak SGEMM	3.95 TF 2.90 TF	3.52 TF 2.61 TF
Memory Bandwidth	250 GB/s	208 GB/s
Memory size	6 GB	5 GB
Total Board Power	235W	225W

Whitepaper: http://www.nvidia.com/object/nvidia-kepler.html

Fastest Performance on Scientific Applications

Tesla K20X Speed-Up over Sandy Bridge CPUs

Applications Scale to 1000s of GPUs

